Transcript- and tissue-specific imprinting of a tumour suppressor gene
نویسندگان
چکیده
The Bladder Cancer-Associated Protein gene (BLCAP; previously BC10) is a tumour suppressor that limits cell proliferation and stimulates apoptosis. BLCAP protein or message are downregulated or absent in a variety of human cancers. In mouse and human, the first intron of Blcap/BLCAP contains the distinct Neuronatin (Nnat/NNAT) gene. Nnat is an imprinted gene that is exclusively expressed from the paternally inherited allele. Previous studies found no evidence for imprinting of Blcap in mouse or human. Here we show that Blcap is imprinted in mouse and human brain, but not in other mouse tissues. Moreover, Blcap produces multiple distinct transcripts that exhibit reciprocal allele-specific expression in both mouse and human. We propose that the tissue-specific imprinting of Blcap is due to the particularly high transcriptional activity of Nnat in brain, as has been suggested previously for the similarly organized and imprinted murine Commd1/U2af1-rs1 locus. For Commd1/U2af1-rs1, we show that it too produces distinct transcript variants with reciprocal allele-specific expression. The imprinted expression of BLCAP and its interplay with NNAT at the transcriptional level may be relevant to human carcinogenesis.
منابع مشابه
Genomic imprinting at the WT1 gene involves a novel coding transcript (AWT1) that shows deregulation in Wilms' tumours.
The Wilms' tumour suppressor gene, WT1, is mutated in 10-15% of Wilms' tumours and encodes zinc-finger proteins with diverse cellular functions critical for nephrogenesis, genitourinary development, haematopoiesis and sex determination. Here we report that a novel alternative WT1 transcript, AWT1, is co-expressed with WT1 in renal and haematopoietic cells. AWT1 maintains WT1 exonic structure be...
متن کاملDNA Methylation and Trinucleotide Repeat Expansion Diseases
DNA methylation of CpG dinucleotides is essential for mammalian development, X inactivation, genomic imprinting, and may also be involved in immobilization of transposons and the control of tissue-specific gene expression (Bird & Wolffe, 1999). The common theme in each of these processes is gene silencing. Therefore, gene silencing is a major biological consequence of DNA methylation. As such, ...
متن کاملTwo Steps Methylation Specific PCR for Assessment of APC Promoter Methylation in Gastric Adenocarcinoma
Gastric Cancer (GC) is the second most common cancer in the world and a leading cause of cancer-related mortality. Methylation of promoter CpG islands (CGIs) belonging to tumor suppressor genes causes transcriptional silencing of their corresponding genes leading to carcinogenesis and other disorders. Adenomatous Polyposis Coli (APC) a tumor suppressor gene is inactivated by methylation of prom...
متن کاملO-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملImprinting of RB1 (the new kid on the block).
Recent data have revealed that the paradigmatic tumour suppressor gene RB1 on chromosome 13 is preferentially expressed from the maternal allele. Imprinted expression of RB1 is linked to a differentially methylated CpG island in intron 2 of this gene (CpG 85). On the paternal chromosome, CpG 85 is unmethylated and acts as a weak promoter of an alternative RB1 transcript. Paternal mRNA levels ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2009